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nth symmetrized powers of space group representations : 
subgroup formulae 

D H Lewis 
Department of Applied Mathematics, University College of North Wales, Bangor, 
Caernarvonshire, U K  

MS received 11  January 1972, in final form 21 September 1972 

Abstract. The paper outlines a full group method to obtain subgroup formulae enabling 
one to calculate nth symmetrized powers of space group representations. Attention is given 
to the practical cases of n = 2 , 3 ,  and a comparison drawn with work of Bradley and Bradley 
and Davies on direct and symmetrized squares. 

1. Introduction 

The object is to present subgroup formulae enabling one to calculate nth direct and 
symmetrized powers of space group representations by using a full-group formulation. 
The special cases of n = 2, 3 are examined as special cases of the general theory, and as 
yet are the only powers which are specifically used in physical situations to determine 
selection rules, for instance intervalley scattering, the Raman effect, and the Landau 
theory of second order phase transitions, which requires one to evaluate symmetrized 
cubes and antisymmetrized squares. 

A comparison is drawn in the n = 2 case with the subgroup method given by Bradley 
(1966) and for symmetrized squares by Bradley and Davies (1970). 

2. Notation 

It was thought advisable to give a preliminary list of the notation adopted. For com- 
pleteness some relevant information and definitions are also given. 

D: is the pth irreducible representation of a space group based on the wavevector k 
in the Brillouin zone. 

$ is the character of the representation D;. 
Gk is the group of the wavevector k,  and is usually termed a ‘little’ group. 
A: is the pth irreducible ‘small’, or allowed representation of the little group Gk of k.  
t): is the character of A:. 
D: = (A! t G), where t symbolizes the process of induction (see Bradley 1966). 
R is a typical space group element and can be written as R (Sit  + T~), in the Seitz 

t~ T, the abelian group of lattice translations; T E Gk for all k, and zS is the 
notation. 

associated nonlattice translation. 
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126 D H Lewis 

The standard formula linking the full group and the subgroup characters is given by 

where the sum is taken over all the coset representatives of Gk in G. $!(a- 'Ra) = Ic/&(R) 
in shorthand notation. 

= 1  
= o  otherwise. 

if a - l R a ~ G ~ ,  that is (a~zu)-'(Slz,+t)(alru)~ Gk Jm 
If A is a set, then define A by the isomorphism A E A/T, that is (SIT, + t )  E A implies 

IAl is the order of the group (set) A. 
Given the coset expansion G = CiaiGk, then the set {ark}  is called the star of k ,  

denoted by *k, and is a set of IGI/IGkl nonequivalent wavevectors. 
Two wavevectors h and k are equivalent, h = k,  if and only if they differ by a reciprocal 

lattice vector K.  
*k ,  0 *k,  0 . . . 0 *k, = Clnl*l is a set S of WVSRS (wavevector selection rules), 

n, being the frequency of *l. A typical member of S is Elk, +a ,k ,  + . . . +a,k, E 1. 
Here the ai are arbitrary coset representatives of Gk' in G. 

6(alkl +a,k,  + , , . +a,k,,-l) = 1 

S E  A. If A is a group, A is termed the little cogroup. 

if and only if a l k ,  + a,k, + . . . + a,k, E 1 

= o  otherwise 

The notion of a double coset HaK, with H, K both subgroups of G is explained 
in Bradley (1966). We would like to emphasize that whenever a double coset appears in 
the following text, it is taken from a double coset decomposition with respect to G. 

3. nth power direct products 

3.1. Derivation of method 

We examine the set S of WVSRS 

*k, 0 *k, 0.. . 0 *k, = n;l 
1 

and show how they can be combined into subsets by using various double coset expan- 
sions with respect to G, the full space group. 

Choose an arbitrary member of S 

a1kl + azkz + . . . + a,k, = C aiki E 1 

A = Cz,(A A N U I U  2 . . . u " )  

(1) 
i 

and form the expansion 

n 

- - Gt;  A Gt; A . . . A Gk,; = ny= , Gk,: = N ,  with the convention z1 = e, where Null2.. .U, 

the identity. A is a subgroup of G. 

Definition 1. Two WVSRS Cia ik i  = 1 and Cja;kj = 1' are equivalent if and only if 
uiki = aikj for all i, and 1 1'. Otherwise the WVSRS are termed distinct. 
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Definition 2. Given a group A,  and a particular set of coset representatives (z,} with 
respect to  A A N,, then the set of WVSRS obtained by operating with the z ,  on WVSR (1) 
is called the ‘derived set’ of the ‘leading’ WVSR (1). 

Lemma 1. Any member of the ‘derived set’ could be taken as a leading WVSR, and 

Proof: Take as ‘leading’ WVSR z,Cia,k, = z,I and thus form the expansion, 

the same derived set would result. 

’4 = c w,(A A N(,&,). 
P 

wpz,(Ciaiki) = w,z,f can be rewritten as zm(Xiaiki)  = z J ,  where zpn E {z,) for each p, 
giving the same derived set. 

Lemma 2. The members of a derived set are mutually distinct, that is there are 

Proof: Assume the contrary, then for z p ,  z, E {z,}, we have zpCp,ki  = z,Ciaiki 

Thus the expansion A = X,zI[(A A N u )  generates d ,  distinct WVSRS, which are of 

This motivates the classification of all members of the set S of selection rules by using 

Now examine the nature of the terms in the original set. To this end consider the 

IAJ/IA A N,I = d ,  = d,,,, ,,,,, distinct WVSRS in the derived set. 

implying z; ‘ z p  E N,, a contradiction. 

course dependent on the choice of A.  

such expansions. 

expansion 
A = a,(A A Gk,;) 

1 

Lemma 3. Let P ,  Q c G, P = C,p,(P A Q,,), Q,  = d,,Qd; ’, then the IPl/lP A Q,I 
left cosets of Q in the double coset Pd,Q (with respect to G) are those generated by the 
set { p , )  operating on d,Q, and in particular we can write Pd,Q = Pd,Q A X,p,d,,Q (see 
also Bradley 1966). 

As a result of lemma 3 we write 

AalGkl  = AalGkl  A ~ a l a , G k l  
1 

the set {aA>, a ,  = e, of coset representatives operating on a l G k l  generates the same cosets 
as are contained in the double coset AalGkl .  

This set {a1} can be used to generate d ,  distinct WVSRS from (l), that is 

noting that all cosets of Gkl  (members of the star of k , )  generated in the double coset 
AalGkl  are used up in (3). 

Put aAai = aAi with ala i  = a l i  = ai .  Thus consider 
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for fixed A. Using lemma (3) again 
d n 2  

p =  1 
( A  A G~l l )a12Gk2 = ( A  A G t ; l ) ~ 1 2 G k 2  A a,,(a,azGk2) ( 5 )  

that is the set { a l p }  generates dl,  distinct cosets from aLzGk2 being the same left cosets 
contained in the double coset ( A  A G~:l)a,,Gk2. 

Also 

that is d12 = d z  is independent of A. 
Note that 

( A  A G:;,)%,,Gk2 = ( A  A a,Gt:a;')a,azGk2 = a,[(A A GE:)a2Gk21 
= a l [  ( A  A Gt:) A d 2  al,.azGk2]. 

,' = 1 

Hence from (5 ) ,  the set of d, cosets of Gk2 generated from a,r2Gk2 by {a,,}, that is 
{a,,a,xzGk2} is the same as the set generated in (6), a,{al,xizGk2} = a,{a1,azGk2}. 

Without loss of generality we can make the identification a,al,, = aR,al, that is 
alp = a,a,,,a;' E G:l1. Using the set {al,} for each a l ,  we generate d ,  new distinct 
WVSRS, that is 

Set a,,a,ai = alui. Note again, that for the terms {aipalazkz} the members of the star 
generated by the a,, are exactly equivalent to the cosets generated in the double coset 
( A  A G ~ ; , ) U , , G ~ ~  which is in turn equal to a,((A A G2;)a2Gk2) giving a very convenient 
link, as of course 

x a l { ( A  A G ~ : ) a z G k 2 }  = aZGk2 = Aa2Gk2. 
2. 

(7) 

We now examine the pth step in this procedure. For notational purposes adopt 
v, l ,  c as the ( p  - 2)th, (p  - 1)th and pth symbols in a string of Greek letters. 

Definition 3. 

Definition 4. 

For notational convenience we shall denote a string of Greek symbols by bracketing 
the last member, for example a,, = a$,), M'R,;,:: = MI&-'), etc. This convention will 
be used only when no confusion can arise. 

Consider 
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in relation to the double coset (MI:) ' ) ) ~ l ( ~ ) ~ G ~ p .  Using lemma 3 
4 < l P  

(Mlf2 ')) Gkp = (MI:; ' ) ) ~ l ( < ) ~ G ~ p  A u ( ~ ) u ( ~ ) ~ G ~ ~  (9) 
a = l  

%)P 

that is the d(t)p left cosets of Gkp are generated by the {a(a)} operating on ~ l ( < ) ~ G ~ p ,  so 
for fixed (t), d(r)p cosets (members of *kp) appear in combination with 

a(,)%kl + a(,)a(,)& + ' ' ' +a(&") . 1 . a ( , ) a ( A ) a p -  lkp- 1 . 

Lemma 5. 

d(t)P = dlP...v<p = d l l , , . l l p  = dp 

that is, the number of cosets in the double coset ( M ~ E ; - ' ) ) M ( ~ ) ~ G ~ ~  is independent of (0. 
Pro05 

Lemma 6. 

(M(P-1)) (t) %P G ~ P  = @(<)a(,') . . a(,)a(,))((M~p~..'l)ClpGk"). 
The proof follows immediately from previous lemmas. 

Lemma 7. The same left cosets of Gkp are generated in the set {a(u)q(r)pGk~} as in the set 
(a(r)u(v) .  . , U ( , ) ~ ~ ~ , , , ~ , , C ~ ~ G ~ ~ } ,  The proof is immediate from the prevlous lemma. 
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and by lemma 6, and equation 10 

Lemma 9. 

a(<)%) . ’ . a(p)a(i) = a l p . . . ” < a A p . , . v ~  . . a,pa, = alalp . . . a1 1...1<‘ 

P r m t  By lemma 8 

a(<, = U ( ” ) .  . . qA)all.,,l<a(i; . . .a;;. 

Therefore 

a ( < ) a ( v ) . . . a ( i )  = Q ( ~ ) * . * ~ ( A ) ~ I I . . . I < *  

Next substitute for a(v) using lemma 8, and the final result is evident. 
Hence we can rewrite the set 

{a(<)a(v) * * ’ a(,,a(A)all. ,lu@pGk”} 

{a,a,, . . . ~ll...l<~ll..,lu~pGk~3. 

as 

This now gives us a convenient method for linking the derived set with a set of double 
cosets; for as we have noted already the only terms appearing in the derived set in 
combination with 

a(>.)u,k, +a(p,a(,)a&2 + . . . +a(<)a(v) . . . a ( ~ ) a p -  ~ k p -  1 

are those, and only those appearing in the double coset 

(M(P-  (e)  I ) ) @  (<)P G k P  = (a(<)%) ’ . * .(,)~(A))(MIPL.f1 l)apGkp 

= (aAal,. . . . l l . . . l , , ( M ~ ~ . f ~ ) ~ p G k p  (1 1) 

giving a direct association between 
( M ( P - ~ ) ) c (  G ~ P  and (M(P-1) 1 l... 1)a,Gkp 

(<I (<)P 

using the coset representatives aA,a i , ,  . . . , u ~ ~ , , , ~ ~  etc, where {zn} = { a A a i p .  . . ail,, .lu}, 
the order of the RHS being d 1 d 2  . , . d,- = d, , ,  *,,, ,, as required. 

A typical member of the derived set can be written as 

a , (a ,k1+~1p(~2k2  f . .  +~II . . .~~OJ) . . . )  = a ~ a ~ p . . . a ~ ~ . . . ~ u l .  

Lemma 10. 

E’ (M{gy ” ) ~ t ( ~ ) ~ G ~ p  = AapGkp 
A.p,, . . ,V ,<  
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where C‘ implies the sum is restricted to those indices that appear in the expansions (8). 

Proof: 

1‘ (M$y  l’)a(e,pGkp = 1‘ (aial, ‘ .  . ~ l l . . . l ~ ~ ~ ~ I p ~ . ! l l ~ ~ p ~ k ~  
A+, ..., V , e  A 3 , , . . . , V , <  

by lemmas 4 and 9. Now 
C ’ a , ,  l eM(P- l )  - M(P-2) ... 11...11- 11...11 

5 
and 

1‘ u 1 1 , , ~ 1 Y M ( p - 2 )  1 1  ... 1 - - M(p-3)  11...1 
Y 

etc, and the result follows. 

AapGkp are used up, and only these are used. 
This lemma tells us that within the derived set framework all the cosets of Gkp in 

We can sum up in a theorem. 

Theorem 1. Associated with a leading WVSR I: aiki 5 1 there exists a unique set (n-tuple) 
of double cosets {(M‘f;,f,’)a,Gkp}~,= that completely specify the nature of the derived 
set, in the sense that all relevant information is obtainable by using these double cosets 
and various coset representatives outlined in the above lemmas. 

As a result of the theorem, to obtain a new leadingwvsa, one has to consider a t  least 
one new double coset in the above n-tuplet 

Consider the following expansions 
n i  

G = 1’ Aal iGk l  
i 

n 2 1  

j 
G = C ( A  A Gk:,)a2ijGk2 for each i 

with the convention that a p l l , , , l l  = u p .  Now given a l i ,  a z i j , .  , . , up-  l i j . , , k ,  the expan- 
sions tell us the possible a’s that appear in ‘combination’, that is the set of double coset 
representatives {ap i j , , . k l } .  This can be represented pictorially as follows 

I 
‘ . ’ d,,,,, * a . 

defining a series of paths, each of which gives us a ‘leading’ WVSR. 
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For example to obtain a new leading WVSR, change say the pth member in the set 
{(MY<,f],)ct,Gkp), that is alter cl, = ctpl l , . , l  to ctpl, , , l l  say. See equation 12(c). This 
effectively moves us onto a new path in the diagram, and one now continues along this 
new path making sure not to cross onto any other. Care must be taken, of course, if 
we decide to change the nth entry, in that the new choice must 'complete' a path. 

We can check up on the completeness of the procedure as follows. From equation 
12(4, 

Similarly 

- IGI -- IA A Gt:il 
?'IA A Gt:i A G!& IGk21 

for fixed i. Multiply both sides by IAI/IA A G:;J and sum over i, that is 

lAl - IGI2 - IGI 
= T C '  

IAl - /GI" 

lAl 
"IA i d  A Gk:i A G;$,l IG I lA A Gtiil IGk111Gk21' 

The procedure is continued, until eventually 

- 1' 
i , j  ,..., k ,... m l A  A Nij . , ,ml  n?=l I G k z l  

The sum Ei,j,,,,k,,,,m is over precisely the same double coset formation discussed above 

Now from the collection of selection rules (set S )  
in association with the derived set. 

* k ,  0 *k,  Q . . . 0 *k, = 1 nl*l 
1 

the identity equation 

relates the number of terms on each side of equation (14) and therefore from equations 
(131, (15) 

IAl = C n 1 m  I GI 1' 
i , j  ,..., m IA A Nij ... ml 1 

which is independent of the choice of A .  
But JAI/IA A Nij...,I = d i j , , , m  is precisely the same number of WVSRS that are 

grouped together via the coset representatives { z n } ,  so that the set of derived sets (being 
mutually exclusive), exhaust the set S(Xn,*Z). The size and nature of the derived set of 
course depends on A .  

Note that the group A operating on a vector 1, can only send 1 into a member of *1. 
As each pair of derived sets are mutually distinct, then there exists a subset of the set 
of derived sets which is associated only with members of * I ,  and so 

I GI 1" dij ... m = ~ I / G ' I  
i,j, ..., m 



Symmetrizedpowers of space group reps 133 

C" implying that the sum is restricted to those leading WVSRS combining to give a 
member of *1. 

If A = G', then q E G' will be such that q l +  I, thus 

C"' being the restriction to that subset of leading WVSRS combining to give 1. 
To illustrate some of the above ideas, we take as an example of the triple power of * W 

from the asymmorphic space group Fd3m. For details on notation etc, we refer the 
reader to tables in Davies and Lewis (1971). 

NOW * W Q  * W Q  *W = 16*W+12*A+12*L 

Take W+ W+ W = C Z z W  as our starting leading WVSR, with A = GA say. So 
consider (a):G = CiGAaliGW, compare (12a), a l l  = E, a12 = S:, where 

GAEGW = (E, CZz, C,, , Cy3)GW 

GAC:,GW = (C l ,  , Ci3)GW. 

(cl G = C ( G A  A GT A G ~ ) C X , ~ ~ ~ G ~ ;  GT = LY,~~G"'M;~~. 
k 

We quote results in the following diagram. 
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These diagrams define 26+ 18 = 44 leading WVSRS, for example, from 

W S  w+ w = c,,w 
change the second entry W + C;, W,  then we have a choice of five entries; take C;, W. 

So W+ C:, W+ C;, W = L is another leading WVSR. 
To avoid confusion one must use the original labels for double coset representatives ; 

for example, one could take W+C,',W+C;3W as a leading WVSR, as long as 
W+ Cl, W+C;, W is excluded from the list. As C;, E (GA A GW A GFc3)C;1GW, 

both are in the same derived set. 
To check the completeness of this procedure, work out IGAI/JGA A GT A GYI, and 

sum over the 44 leading WVSRS. In fact 

compare (16), as required. 

the derived set. 
Let us now examine the case 1 = L, with again A = GA, and consider the nature of 

An appropriate leading WVSR is 

Form the expansion 

GA = 1 zn(GA A GW A CilGWCT1 A CiIGWC:, A GL) = 1 z,E 
It It  

Hence { z n }  = GA. 
The derived set thus consists of 8 WVSRS, which are 

W + C &  w+c;, w = L 

w+ c:, w+ cy3 w = C,,L 

c,, w+ c:, w+ c;, w = Cz,L 

e,, w+ e:, w+ c;, w = CZXL 

c;, W-F c;, w+ c,= w = C2,L 

c,,w+c,:w+ w = C2,L 

c ,  w+ c,; w+ c,, w = L 

c,  w+ c;, w+ w = C,,L. 

Note also that the frequency of each member of the star of L is the same. This is 

The structure is further emphasized by using 
in fact a general result, even if not all members of *I  appear. 

+ GA(C:, 

This shows clearly that columns 1 and 3 contain only (E ,  C2, ,  C;, , C;,) W while the 
second column contains only, ( C l , ,  C13) W. 

= ( E ,  C,,, C,',}, 
that is, there are four different entries in the first column, with 

Consider GA = C,a,(GA A Gw), see equations (2) ,  (8), with 

C,,W = c,,w, CiY  w = c;, w, c,w = c, w. 
For each A, examine 

d 2  

GA A GE = xaj.,(GA A Ga", A GK,,:) 

compare (4), (8), and in this case {a,,} = E only, for all 2. Hence for each A, 
(GA A G ~ , , , ) ~ , C ~ ~ G ~  contains only one left coset of GW, (see equations (7), (12)), telling 
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us that with each a, W there is only one term appearing in combination-this can 
clearly be seen from the example. 

Also 
x a , { ( G A  A GW)Cl lGW} = GACl,GW 

2. 

(see equation (7) and lemma 10). Finally for each %p, 

(see equation (8)), we shall quote the results, that is d 3  = 2, a ,  , = a, , = a, , , = a4, , = E, 
a l 1 2  = a Z l 2  = oZ,a3l2 = %12 = ox. 

From these results we see that in combination with W+ C;, Win the derived set, we 
can have both EC;, W = C;, W and ozC;, W = C;, W ,  which ties up with the example. 

Similar results can be generated for the other cases. We can show how the cosets 
link up. For example with 1 = 3, p = 1, a, = C2y, alp = E, (see equation (12)). 

( M I $ ) ) U , , ~ G ~  = (Mi2) )U, , ,G~ = (ML2])a31a3U3GW. 
Now 

M(2)  - G A  A GW 
3 1  - csl A GE+3 = a3 lv(ML21) A G Q  

V 

where a31a3t13 = ClYC;, = C,. Therefore 

( M L 2 ) ) ~ 3 1 ~ 3 ~ 3 G W  = (E,C,,)GW. 

Compare with 

4341 1((Mi2j)C,lGW) = Cly(C;,GW, C i3GW)  = ( E ,  C2,)GW. 

A relevant practical example could be considered by taking A = GA, 1 = A. One 
could then scan through the 44 leading WSRS to find one giving A, that is, 

W+ W + C 1 3 W  = A .  

As IGAI/IGW A GE+3 A GAI = 4, the derived set contains 4 members with 

{ZJ = (E,  CZy, cy,, 
and the derived set is 

W+ W + C 1 3 W  E A 

C,, W+ C,, W+ C;3 W E A 

C;,W+C;,W+C;,W E A , 

c ;3w+c;3w+c~lw~  A .  

To find a new leading WVSR change the second entry from W to C i ,  W say, and 
clearly a possibility is W+ C;, W+ W A for a second leading WVSR. Again the order 
of the derived set is 4. 

Now an obvious practical choice for a third (and final) leading WVSR would be 
C13 W+ W+ W but this does not appear explicitly in the scheme of paths, but will 
appear as Cl, W+ C;, W+ C;, W = A, a member of its derived set as 

c,:c;, w -+ c,; w, c:&, w -+ w. 
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So these three leading WVSRS have (by coincidence) derived sets of order 4, and so as 
the frequency of *A is 12, they are sufficient. 

There are no more paths giving A, for if there were the overall completeness would 
not be guaranteed. 

3.2. Application of method 

To calculate nth direct powers, we have to evaluate the coefficients 
1 n 

Use the usual substitution to express the character in terms of characters of the 
appropriate small representation, that is, 

The definition of Aal , , , an6  is obvious from (19). 

In order to rewrite this expression consider 

putting 

where 

and t p  is a lattice translation vector. Also (8l~,)-~(Sl.t~)(6lz~) = (Ulz,+t,) with 
t , + t ,  = 6-'(Uz,+z,-z,), and t ,  a translation vector. As U = 6-'S6, then 

(4%)- l(~lMM = (w- '(4%)(6l%- '(sl~s)(~l~6)(~l%)- %I%); 

( 6 l t a ) - ' ( w  = ( P l z p + t p )  

T p + f p  = 6-'(2,-za), 
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U E q?$, ...p; Thus 

(4%) - ' ( S I 4  ( a l a  = (EIP - ' ( U t ,  - t p  + tu))(PI.ts) - Y ul%/)(Plq. 
Therefore 

~a{(~12,)-1(SltS)(~12,)} = $({(PIT,)- ' W I M P I Q }  exp{ -ik . P -  ' ( U t P + t U -  $1) 
by using the properties of $a as a small representation. Because U E G ~ ,  then 
U-'Pk Pk, and we have 

exp[ik . { P- ' ( U t ,  + tu - t , ) ) ]  = exp( - iPk . tu).  

By substituting similar results, the expression becomes 
n 

x exp{--i( 

Now 

so that 
- 

A l a  2...a,6 - A P I . . . B ~ ~  = A B ~ . . . P "  
1 with %...p, = % . . . a n d -  . 

The lemma shows that we can concentrate specifically on the WVSR CjPjkj = 1, and 
the sum (19) is split into ~ G ~ / ~ G ' ~  equal portions, that is, 

As we can concentrate specifically on the WVSRS Cy= Piki = 1 we are dealing with 
the case A = G' mentioned above. So, consider the expansion 

with the set of coset representatives { z n }  having the properties outlined in lemmas 1, 2. 
As each zn gives a different WVSR of the derived set, denote z,Pj by Pnj  and 

APn 1Pn2 ... P n n  by Al;,'p z.../?". 
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Denote z;'Sz, by S , ,  then (z,lz,)-'(SlzS)(z,lz,) = (S,lzs,+t) where 

SO 

t = z,'(-z,+zs+sz,)-zs,. 

using the properties of small representations. Now as z ,  E G', then 

Thus finally 
- A ( e )  'gb2...Pn - p1 ... P " '  

The lemma shows that the sum (20) can be split into various portions based on the 
leading WVSRS and the completeness of this approach has been guaranteed previously 
in this section, that is, by 

c dl.ll...l.ln = nf, 
(8 )  

(compare (17)). C,y, is the restriction to those leading WVSRS combining to give I. The 
procedure for finding the relevant leading WVSRS has been laid down, where we have 
G'for A. Thus 

or in the final form 

where C' signifies that the 6 ( C i ~ , R i - I )  term is automatically allowed for. 

work, but has been obtained by a totally different approach. 
The result is identical to one obtainable by a natural extension of Bradley's (1966) 

4. Symmetrized nth powers 

We now wish to calculate the coefficient 

[x:](") being the character of the nth symmetrized power. It will be shown in 5 5 that 
one can concentrate specifically on a portion of the sum 
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Make the usual substitution to reduce to the character of the small representations 
(see equation (1 8)) : 

Put R = (SIT, + t ) ,  so that R" = (S'l~r, + t + S(rS + t )+ . . . + S"- '(7, + t)), and sum 
over the translation group noting that 

Hence 

where Qa,6 is defined by: (i) 
the Z' is included to show that the WSR of condition (iii) must be satisfied. Write 

(ii) SEC:, (iii) ( 1 + S +  . . .  +S"-')cr,k 61 and 

with Bald defined in the obvious way, then : 

Lemma 13. 

B a l d  = Bo1,, p1 = 6 - ' a , .  

The proof is straightforward along the lines of Lemma 11. 
Using lemma 13 we have 

and 

where e, is defined as : 

(i) S n ~ C i l ,  (ii) SEC', (iii) (1+S+ . . .  +S"-')P,k 1. 

We note that either (i), (iii) or (ii), (iii) would suffice to define the set. 
Write SJ-'b1 = p j  and consider the expansion G' = Z I I ~ n N P 1 , , , P n ,  proceeding in 

exactly the same way as for ordinary powers by using the notion of leading and derived 
sets of WVsRs, and splitting the sums into sets of order lG'l/lNDl,,,pn\ (see lemma 12), and 
so we have the analogous lemma : 

Lemma 14. 

Bf! = B f ! .  

The proof is straightforward. Thus we can write 
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(p) or P1(p2 . . . Pn) implies summing over all leading WVSRS. The symbol pl(pz,. . p,) 
is included to emphasize that all p1 must be considered, that is, p2 . . . pn could be, and 
often is, different for the same p. E" signifies that although we sum over the same leading 
WVSRS as for ordinary products. not all of these will contribute to Cft(n) because of the 
special form that the WVSR must take, that is, its obvious dependence on S. So, faced 
with the various leading WVSRS one must endeavour to find a routine that will help 
identify those that contribute. 

We emphasize that in the portion of the sum B,, (equation (23)) we are concerned 
with one WVSR, and clearly Qsl = Qo, has to be non-empty. 

Lemma 15. 

That is, QPl(,2,,,Pn) is the coset of flpl,,,pn with respect to G' 

Proofi 

If S,  T E Qu, then 
n- 1 n- 1 .. ~ 

2 Siplk = I ,  TiPlk z 1 
i = O  i = O  

and TPP,k 3 SPP,k for all p, that is, 

TTP-'Plk SSP-'P,k  

implying 

S-  ' Tp,k = Ppk, 

S-lTENp ,...,,, 

TESN,,...,". 

VP. 
Thus 

that is, 

As a consequence IQ(,,/ = INpl ,,.,"I. 

Lemma 16. 

Prooj 

If S E then 

(b) S " E G ~ ~ , .  

From (a) p,;'lSP, E Gk, Vp, that is, S E  p p +  lGkp,l, so SE nPp,+ ,GkP, '. 
ConverselyifSE np&+lGkPpl ,  then (a) SEP,+,G~(;', VpimplyingSP,k + Bpflk; 

(4 SPpGk - Pp+ lGk, VP 

Condition (a) replacing ES'P,k E 1. 

and (b) S" E PIGkPp, 'PnGkP,=', . . . P3Gk& 'P2GkP; E G,, . Hence S E  &). 
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Alternatively we can write 

being a permutation symbol meaning S(p,  . . . p,) H (p2 . . . pf lp l ) .  

Lemma 17. 

If Q P l ( P 2  ... B " )  # 4 then G'PiGk = G'pjGk, 

Proof: 

Assume Q(a,#4, then 3s so that Si;: = j l k  implying j i ~ G ' P I G k ,  Vi.  Hence 
G'piGk 

V i , j .  

G'PjGk, Vi,j.  Certainly if G'PiGk # G'PjGk then Q P , ( P 2 , , . P n )  = Cp. 
Now there may exist an integer i 6 n for which Si E GE,. There are three cases : 
(i) i = n, that is, S" E Gpk,, and is the least such n. If we assume that there exist 

integers p ,  q < n such that SPP,k = S4P1k implying S p - 4  E G$, we arrive at a con- 
tradiction as p - q < n. Hence all the coset representatives b1 to & involved in the 
WVSR must be distinct. 

(ii) i = 1, that is, S E  G;, and Pi  = pj for all i, j 6 n. 
The WVSR can be written as np,k = 1 with &) = Gpk:, 
(iii) i < n, with i # 1, so that S i  E Gpk,, Si-' # Gpk,. Choose i to be the least such 

integer. For integers p ,  q < i, SPP,k = S4P1k. 

Lemma 18. 

i divides n. 

Proof: 

This is obvious in cases (i), (ii). In case (iii) we assume not. Then n = p mod i, p < i. 
But as S" E Gp", , and Si  E Gpk, then S P  E Gp",. This is a contradiction as i was assumed to 
be the smallest such integer. 

As a result each WVSR has a unique factorization and can be written as 

( I+S+  . . .  +Si- ' ) f l lk+ . . .  +(I+S+ . . .  +S'-')P,k = r(jtimes), 

or formally as j(l +S+ . . . +Si- ' ) f l lk  = 1, ( i j  = n). The group of this equation is 
G' A Gpk, A . . . A Gp", and not G',A Gf A . . . A Gf. 

Lemma 19. 

If a leading WVSR has j blocks of 'size' i, then all members of the derived set have the 
same structure. 

For a leading WVSR written in the formj(p, + . . . + pi)k = 1, then 
i 

Q P d P  2 . 4 7 " )  = Q P d P  2 . 4 , )  = $' Pp+lGkP, '. 
Again we have the permutation property in the sense that S(p,P, . . . p i )  --f (/j2/j3 . . . pip1). 

We now sum up. Presented with a leading WVSR X i  Pik = 1 in conjunction with the 
sum (24), then the WVSR contributes only if QP11D2...Pn) ( = Q  P1 = &  @,) # 4. Q,, can be 
defined as a set of elements S, such that 

(i) S E  G' (ii) S" E Gpk, (iii) (1+S+ . . . +S"-')P,k 3 1, 
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or can be calculated directly from 

When in block form 

The following points are useful practically: (a) Qp) # 4 only if G'B,Gk = G'B,Gk, 
Vu, (but not conversely). (b)  If Ppk,  P,k, P, k $ P,k appear in the leading WVSR, then the 
frequency of appearance of both must be the same if the leading WVSR is to contribute 
(hence block structure). (c) If (b) is satisfied, then G' must contain elements of order i ,  
with ij = n. (d) If (a) is satisfied, and we have a block structure, then 

G'PIGk = G'P,Gk, l < m < i .  

Hence lG'l//G' A Gpk,( 2 i. 
For space groups one can draw further simple conclusions. 
(i) As space groups contain only 2, 3, 4 or 6 fold rotational elements, for n > 6, the 

leading WVSRS must split in the manner indicated above. If n is prime, and n > 6, then 
we need only concern ourselves with cases nk = 1. 

(ii) For n = 12, (glz,) E G, then g" = E always, which leads to great simplifications. 
Similar conclusions can sometimes be drawn for powers less than 12, depending on the 
nature of the space group. 

We take as an example the fourth symmetrized power of *Xin Fm3m (see Chen et a1 
1968, Davies and Lewis 1971 for notational details). Now 

*xo *xo *xg *x = 21 *r + 20 *x, 
*XO *XO *XO *X = 6 *I? + 3 *X. 

We start by taking A = Gr, and 

x+x+x+x = r 
as a typical leading WVSR. We can set up the following diagram 

defining 14 leading WVSRS. We can pick out the 4 relevant leading WVSRS 

x+x+x+x r, x+x+c;lx+c;lx = r, 
x+ c;,x+ x+ c;,x z r, x+ c:,x+ c;,x+x = r. 
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Note that the orders of the derived sets are respectively 3,6, 6, 6, giving a total of 21, as 
required. 

Now take A = GX, starting again from 

X + X + X + X  r 
the following diagram is produced 

defining 12+27 = 41 leading WVSRS. 

The following are the leading WVSRS giving X :  

( E  + E  + C;, + C:,)X, 

( E  + C:, + C;, + E)X,  

( E  + C:, + E  + C;,)X, 

(C:, + E + E + C,,)X, 

(C,', + c,, + E + E)X,  

cc;, + c:, + c;, + C,,)X, 

cc:, + c;, + c,, + c;,)x, 

(c:, + E + c,, + E ) X ,  

cc:, + c;, + c;, + c:,,x, 
(c:, + c,, + c,, + C,,)X, 

All 10 have derived sets of order 2, giving n x  = 20 as required. 

(XI = X:). Adopt the notation 
Letusnowconsidertheevaluationof(X, t G ) O ( X ,  t G ) O ( X ,  f G)O(X, G) = H,, 

All H, , H,, H, are known. Analysis of the character relations gives us 

H ,  = $H: + C(4) - H:H, + H , H ,  +;Hi 
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C(4) is the total contribution from terms such as (24). Using results in Chen et a l (  1968) we 
get 

H ,  = ~ ~ ( 4 ) + ~ ~ ( 4 ) + $ r ~ + $ r ~ + ~ r ~ ~ + 2 ( ~ ,  t G)+x, t G. 

where Cr(4) = $Ev CTF(4)rv, Cx(4) = $.Ep C;$(4)(X, t G). 
Firstly let us deal with Cr(4), clearly the only leading WVSRS that contribute are 

4X z r and 2(X+C:,x) = r the latter being in the block form 2(E+ C2,)X. For the 
former &, = GX, for the latter &) = C:,GX A GXC;, = (C,,, C,, C2)@(E, I )  = Q. 
Note C,, X _= C:,X, where we associate S = C,,, S2 = E .  Then 

giving 

~ ~ ( 4 )  = $(r1+rl2+r1-rZ) 
= g l  -+p++rl2. 

Clearly none of the leading WVSRS giving X will contribute to Cx(4). 
Hence 

H, = 2r1+2r12+2(X1 G)+X, t G. 

Note the dimensionality checks with the result 

*XQ *XQ *XQ *X = 6 *r + 3 *X. 

5. Comments on evaluation of [XI'"' 

Using the notion of symmetric functions on the eigenvalues of a matrix, we have the 
following results. (The notation adopted is that in Littlewood's book (1959)) 

[x]'"'(R) = h n ,  

X(R7 = s,, 
{x>(n)(R) = a, 

{ } denotes symmetrized powers. Also x(R) = h ,  = a, = S , ,  
Then 

This is the character relation expressing [x](")(R) in terms of x(Rj), 1 < j  < m. But S ,  
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can be expressed entirely in terms of h,, hp -  , , . . . , h,, h ,  by the determinant relation 

h ,  1 0 0 . . .  0 

2h, h, 1 0 . . .  0 

1 

ph, h,-, . . . h l  

By using (25) and (26), h, can be expressed completely in terms of h,- 1 ,  h m - 2 ,  . . . , h ,  
and S,.  These results are expressed in the following lemma. 

Lemma 20 

For all finite dimensional representations Ti, character x i ,  of an arbitrary group G, the 
nth symmetrized power can be evaluated by examining 

only, assuming that (n-  1)th and lower symmetrized powers are known. (That is, the 
h,- , , h,-2,  . . . , h ,  , leaving only S, ‘unknown’.) 

This gives us a convenient induction technique. Further, if the dimension of the 
representation Ti is n- 1 or less, then a, = 0, that is the nth antisymmetrized power is 
zero, and one can express h, completely in terms of h,, p < n by 

h ,  1 0 0 . . .  0 

h,  h ,  1 0 . . .  0 

a , = O =  
0 

1 

h, h,-l . . I h ,  

This has useful consequences especially if one wishes to calculate high symmetrized 
powers. 

6. Direct square products (n = 2) 

The result is obtained direct from the general case. Putting k ,  = k, k ,  = m, I = h etc, 
equation (22) becomes 

which is based on WVSRS ak+Pm = h. The sum is taken over the relevant leading 
WVSRS, and indexed by c@) showing that P is entirely dependent on U. The symbol E’ 
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serves as a reminder that the various a, p must satisfy ctk + pm z h : 

L, = G" A G,k = N,, = Gh A Gt A GY. 

New leading WVSRS are constructed by examining the expansions G =: Xi GhaiGk, and 
G = CjL,PjG". The fact that n = 2 obviously leads to simplifications in practical 
examples. 

These results are identical to those of Bradley's (1966), who gave a rigorous subgroup 
derivation based on Mackey's work. 

7. Symmetrized squares 

From the general equation (24) 

I TI 
a 21LaI SEQ. 

c;m = 1'' ~ 1 +tp{(Sl%)21 +:"{(Sl~s)). 

Define Q, by (i) S E  G", (ii) S2 E G,k, (iii) ak+ Sak = h, noting that (i), (ii) or (ii), (iii) would 
suffice to specify Q,. In fact Q, is a coset of E ,  in Gh, with Qa = aGkp-' A Gh. 

As [x](')(R) = $ ( x 2 ( R ) + ~ ( R Z ) )  the x2(R) being presumed 'known', then the fact that 
1 2 3 2 )  is sufficient 'to determine the problem is a trivial application of 6 5. 

Condition (iii) must be kept in mind when running through the leading WVSRS. 
Those not capable of being expressed in this form will not contribute to Ct32). 

We now draw a comparison with this form of the result, to  that obtained by Bradley 
and Davies (1 970). 

8. Comparison with Bradley and Davies 

Initially ideas equivalent to Bradley and Davies' (BD) self- and nonself-inverse double 
cosets are derived, and the notion of self- and nonself-inverse WVSRS is defined. 
Consider the WVSRS ak + pk = h. This is termed a self-inverse WVSR if and only if there 
exists hEG" such that hak E pk.  This implies G"haGk = G"bGk and can be taken as a 
criterion for interchangeability of the coset representatives within the WVSR framework 
(cf lemma 17). 

Now G"aGk = GhpGk implies Gka-'Gh = Gkp- 'G". So, there exists a k' E Gk such 
that k'ct-'h = p- 'h .  Rewrite clk+pk = h as k + a - ' p k  h or as p - ' a k + k  3 p - l h  
and we can quickly see that we must have Gka-'/3Gk = Gkp-'aGk, that is, a self-inverse 
double coset (cf BD). 

Similarly a nonself-inverse WVSR implies G%Gk # GhpGk and consequently 
Gkha-'PGk # GkP-'aGk a nonself-inverse double coset. 

Hence we have established a direct link between the two ideas. 
elearly G ~ c I - ~ ~ G ~  = Gkp- ' E G ~  is a necessary and sufficient condition for 

aGkp- ' A Gh = Q ,  to be non-empty. Similarly G"clGk = GhpGk implies Gh A PGka-' 
and G' A aGkP-' are non-empty, implying Q ,  is non-empty. 

The method of BD can be regarded as a 'fixed k' approach, whereas the results here 
can be termed a 'fixed h' approach. With the above observations the two approaches 
can be easily reconciled. 
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9. Symmetrized cubes 

From the general theory, equation (24) gives 

Q(p) = Q p 1 ( , 2 P 3 )  defined by : (i) S 3  E Gi1 ,  (ii) S E G' ; (iii) (1 +S+S2)P ,k  = 1 and we can 
write 

Qpl (p2p3)  = (132)Rf11p2p3 = PIGk&- A P3GkPp,  A P2GkP;  l .  

In this case e,,, # 4 only if (cf lemmas 15, 16, 17): (i) P1Gk = P2Gk = P3Gk or  (ii) 
PIGk, P2Gk, P3Gk are all different cosets of Gk within the double coset G'PIGk. Hence 
lG'I/lG' A G;ll 3 3. 

Note: (a) there could be several leading WVSRS with the same value of P1. (b )  If 
S E  Q(,), then S2 E Q'(P) ,  which performs a (123) permutation on the coset representatives 
in the WVSR P,k+P,k+f i3k  1 :  

Qip) = P1GkP; A P2GkP; A P3GkPT1 
and is also a coset of Rpip2p3 with respect to G'. 0' # Q unless S E  G;,. (c) There is 
no necessity for (1 +S+S2)P ,k  = I and (1 + S 2 + S ) P l k  = 1 to be related; indeed they 
could be different leading WVSRS. 

Lemma 21. 

If S E Q ( p ) ,  then S 3 p  = E ,  ( p  integer). 

Proof: 

Assume this is not true, then : 
(a) 3 integer x such that S" = E ,  with x = 1 (mod 3) or (b)  3 integer y such that 

Sy = E with y = 2 (mod 3). For (a)  S" = E = S3"+l, m integer. But as S3 E Gf;, then 
S3" E Gf;, , implying S" E SG;, a contradiction. Similarly for (b). Hence S 3 p  = E .  

This is sometimes of use in practical examples, for instance, if G' does not contain a 
three-fold rotational element, then Q p )  is automatically empty. 

The full problem is evaluated by noting (see 9 5) 

[X,I'3'(R) = ~x , (R) (x? (R)  + xI(R2))  + 3x,(R3) -SX?(R). 

Hence 

r, O r, 0 r, = r, 0 [r, O r,]-~(r, 0 I-, 0 r,)+ 1 ciJ(3)r, ,  (30) 
J 

r, is the representation, x, the character. 
As an example we briefly outIine a calculation based on the space group Fd3m. 

See Davies and Lewis (1971) for the notation, tables and references. 
Now *X@ *X@ * X =  6*T+7*X, and * X O  *X@ * X =  *r+3*X.  There- 

fore to calculate ( X ,  r G) O ( X ,  7 G) @ ( X ,  ? G), 1 can be r or X. G = ( E ,  C;, , C;,)Gx. 
For 1 = r a leading WVSR is X+  Ci1X+ C;,X z r. 

Q ( p )  = (Ci-l> c, > c,, C,) 0 ( E ,  I ) ,  Np1p2p3 = ( E ,  CZX, c2yj C2A @ ( E ,  4. 
Now as n, = 6, and (IG'l/lNPlPZP31) = 6, only one leading WVSR is needed 
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So equation (29) becomes 

The ‘r’ contribution is thus Cr(3) = f(r’ ’ + r2’ - Y”’). 
For Z = X ,  we have 4 leading WVSRS X +  X +  X ,  C:,X+ C;,X+ X ,  C:,X+X+ C:,X, 

X +  C:,X+ C:,X. (Note G = GXEGX + GX(Cll, C;,)Gx). Clearly only the first of 
these will contribute; and for this &) = NP1P2P3 = ex. Therefore 

The total ‘X’ contribution Cx(3)  = f ( X ,  T G) 

+ x 2  T GI. ~ ~ ( 3 )  + cX(3) = f ( l - 1 ’  + l-2 = - r12* 

Now (XZ T G) 0 (XZ T G) 0 (X, T G) and -f(X, T G) 0 [(X, T G) 0 (X, T G)] can be 
easily obtained from known tables. 

Finally using (30) where CjC’j(3)T, = Cr(3)+ Cx(3) 

(X,TG)O(X2TG)O(X,TG) = r ’ - + ~ 2 + + ~ 1 5 + + r 2 5 - + 2 ( X 1 f G )  

+4(X, T G)+X, T G+X, T G. 

10. Discussion 

The calculation of selection rules for crystallographic processes is a well known problem, 
and in this paper subgroup formulae have been derived from the standard full-group 
formulation. As mentioned, this is in contrast to the subgroup technique used by 
Bradley (1966) and Bradley and Davies (1970) in adapting Mackey’s work on direct and 
symmetrized squares. 

Zak (1966) was the first to make an attempt at  deriving subgroup formulae from the 
fullgroup approach, and the error in his work (on direct squares) is corrected here by 
including a completeness relation (see 0 3). Hence the notion of a double coset is in- 
troduced and its utility in practical examples is evident, (eg the diagrams in &3,4) 
especially in the work on symmetrized powers. Streitwolf (1969) has also derived 
results from n = 2 using a similar approach to this paper. Raghavacharyulu (1964) 
also obtains formulae of a similar type, but his work contains some errors, for example 
equation A, p 10, and equation 22, p 15. 

The general case (arbitrary n)  proved illuminating in that the method emphasized 
the similarities between the problem for symmetrized squares and symmetrized cubes, 
and demonstrated its usefulness in that only one term (the x(R”)) remains to be evaluated 
(see 9 5) .  

For higher power calculations, the facility of choosing leading WVSRS is crucial to 
the practicality of the method. The double coset diagrams of # 3,4  could often get too 
unwieldy to handle (especially for points of low symmetry in the Brillouin zone), and the 
optimum approach in solving an actual problem is to keep in mind both subgroup and 
full-group approaches, the latter outlined by Birman (1962). Of course, one also has 
to keep in mind possible ‘short cuts’ in all cases. For example, in the text we used 
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* W 0 * W 0 * W with A = GA, which has 44 leading WVSRS, of which only 3 are needed 
for the relevant portion ofthe sum. These can often be chosen by a more ad hoc approach ; 
the general method only to be relied upon in difficult situations. 
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